Slides by Kevin Miao (kevinmiao@berkeley.edu)

www.kevin-miao.com

CS61BL - Tutoring Section 9

Hashing, Priority queues and Heaps

 Quick Review
* Quiz Review (Optional)
 Worksheet

Resources:

- www.cs61bl.org/su20/resources

http://www.cs61bl.org/su20/resources
http://berkeley.edu

R
o8 o8 o8 o2

. l()bjkective: Data structure that supports ©(1) runtime for adding and
ookup.

» Idea: Combine the best of both worlds (Arrays + LinkedLists)

« Hash Functions:
 Valid:

« Determinism: Same items (.equals()), same code
» Consistency: Every time you call hash function on same item it produces the same code

 Good

» Uniform spreading and quick computation

Key: Alex Key: Ada
Value: Schedel Value: Hu

 Memory Efficiency:

* Resizing when too crowded (Imagine: LinkedList)

Key: Connor
Value: Lafferty

* load factor = array.length [size()

Key: Henry
Value: Kasa

Key: Jay Key: John
Value: Kakkar Value: Xiang

Priority queues

» Objective: Data Structure that processes based on priority

 Variants:
* MaxPriorityQueue (Emergency Room)
* MinPriorityQueue (Refrigerator)

« Each item in the PQ is in the form (Item, priority)

* Functions:
 Insert(item, priorityvalue)
* Peek() — Returns item to be popped off next
* Poll() — Pops off item

Heaps (Max/Min)

* Objective: Basically an implementation of a priority queue but more
efficient in the form of a tree

* NOTE: HEAPS ARE NOT BINARY SEARCH TREES

* Representation: Complete Trees (i.e. completely filled, last row
needs to be filled from left to right)

. Irgleellnentation: Array starting at 1 = 1. Left child = 2N; Right child
= 2N+

 Insertion: Add item to bottom; Recursively check if item is
smaller/larger than parent. If so, swap all the way up to root.

 Deletion: Swap bottom item with root; Recursively check if item is
smaller/larger than kid. If so, swap all the way up to bottom.

Completeness

Incomplete

Quiz Q1.1: Hashing

A)
@Ooverride
° o ° 0 public int hashCode() ‘
Which ones are valid hashing functions? | o D Jlen s
B)

public int hashCode() {
return this.students.length; //Option B

public class Course { }
public final int CCN;
public final String instructor; Q)
public Student[] students;
public int audited; //when the course was last audited @override
- A » . . public int hashCode() {
public Course(int CCN, Student[] initial) { O T
this.CCN = CCN; }
this.students = initial;
this.instructor = "Matt"; D)
}
//implementation @override
public void audit() { public int hashCodef) {
. return 5; //Option D
this.audited = System.currentTimeMillis(); }
//implementation
} E)
public void addStudent(Student s) {
//implementation Coverride
} public int hashCode() {

} return getNumericValue(this.instructor.charAt(0)); //Option E

}

Quiz Q1.2: Hashing

If the load factor is 1.25, how many inserts can we make

before resizing?

Monster Hashing Question is explained on video

Apple

Lemon

Mango

Orange

Peach

Quiz Q2: Heaps

What is the left child of 4 and right child of 6? MaxHeap: Peeking, polling and inserting. We

only have access to a MinHeap. What do we
do?

We have the following heap, representing a Min PQ:
[, 1,4,6,7,10,12,15, 16, 22, 34, 56, 71]
Here, - represents null.

Worksheet Q3: Runtimes

3 Search structure Runtimes

Assume you have N items. Using Theta notation, find the worst case runtime of each function.

Function Unordered List | Sorted Array | Bushy Search Tree | ”Good” Hash Table | Max Heap
find
add (Amortized)
find largest
remove largest

Worksheet Q1.1: Heaps

1. Min Heap

(a) Draw the Min Heap that results if we delete the smallest item from the heap.

(b) Draw the Min Heap that results if we insert the elements 6, 5, 4, 3, 2 into an empty heap.

(c) Given an array, heapify it such that after heapification it represents a Max Heap.
int[] a = {5, 12, 64, 1, 37, 90, 91, 97}

Worksheet Q1.2: External Chaining

2. External Chaining
Consider the following External Chaining Hash Set below, which doubles in size when the load factor
reaches 1.5. Assume that we’re using the default hashCode for integers, which simply returns the

integer itself.
0 +—+8
1, =25
2| =10
3] +15

(a) Draw the External Chaining Hash Set that results if we insert 18.

(b) Draw the External Chaining Hash Set that results if we insert 5 after the insertion done in part (a).

Worksheet Q2: Valid Hashing

2 Invalid Hashes

Which of the hashCodes are invalid? Assume we are trying to hash the following class:

import java.util.Random;
class Point({

private int x;

private int y;

private static count = 0;

public Point (int x, int y) {
this.x = x;
this.y = y;
count += 1;

(a) public void hashCode() { System.out.print(this.x + this.y); }

(b) public int hashCode() {
Random randomGenerator = new Random();
return randomGenerator.nextInt(Int); }

(c) public int hashCode() { return this.x + this.y; }
(d) public int hashCode() { return count; }
(e) public int hashCode() { return 4; }

