Slides by Kevin Miao (kevinmiao@berkeley.edu)

www.kevin-miao.com

CS61BL - Tutoring Section 9

Hashing, Priority queues and Heaps

* Quick Review
* Quiz Review (Optional)
 Worksheet

Resources:

- www.cs61bl.org/su20/resources

http://www.cs61bl.org/su20/resources
http://berkeley.edu

R
o8 o8 o8 o2

. l()b'ective: Data structure that supports ©(1) runtime for adding and
ookup.

» Idea: Combine the best of both worlds (Arrays + LinkedLists)

* Hash Functions:
* Valid:
« Determinism: Same items (.equals()), same code
» Consistency: Every time you call hash function on same item it produces the same code

 Good

» Uniform spreading and quick computation

 Memory Efficiency:
* Resizing when too crowded (Imagine: LinkedList)

Key: Alex
Value: Schedel

Key: Ada

Value: Hu

Size :
o lOad fClCtOT - 2 | Key: Connor
array.length . Value: Lafferty

Key: Henry
Value: Kasa

Key: Jay
Value: Kakkar

Key: John
Value: Xiang

Priority queues

» Objective: Data Structure that processes based on priority

 Variants:
* MaxPriorityQueue (Emergency Room)
* MinPriorityQueue (Refrigerator)

« Each item in the PQ is in the form (Item, priority)

* Functions:
 Insert(item, priorityvalue)
* Peek() — Returns item to be popped off next
* Poll() — Pops off item

Heaps (Max/Min)

* Objective: Basically an implementation of a priority queue but more
efficient in the form of a tree

* NOTE: HEAPS ARE NOT BINARY SEARCH TREES

* Representation: Complete Trees (i.e. completely filled, last row
needs to be filled from left to right)

« Implementation: Array starting at 1 = 1. Left child = 2i; Right child =
21+1 forall 1in N.

 Insertion: Add item to bottom; Recursively check if item is
smaller/larger than parent. If so, iterate until root or terminate.

* Deletion: Swap bottom item with root; Recursively check if item is
smaller/larger than kid. If so, iterate until root or terminate.

Completeness

Incomplete

Quiz Q1.1: Hashing

A)
@Override
° o ° 0 public int hashCode() ‘
Which ones are valid hashing functions? | Eo D Jlen s
B)

public int hashCode() {
return this.students.length; //Option B

public class Course { }
public final int CCN;
public final String instructor; Q)
public Student[] students;
public int audited; //when the course was last audited @override
- A » . . public int hashCode() {
public Course(int CCN, Student[] initial) { O T
this.CCN = CCN; }
this.students = initial;
this.instructor = "Matt"; D)
}
//implementation eoverride
public void audit() { public int hashCodef) {
. return 5; //Option D
this.audited = System.currentTimeMillis(); }
//implementation
} E)
public void addStudent(Student s) {
//implementation Coverride
} public int hashCode() {

} return getNumericValue(this.instructor.charAt(0)); //Option E

}

Quiz Q1.2: Hashing

If the load factor is 1.25, how many inserts can we make

before resizing?

Monster Hashing Question is explained on video

Apple

Lemon

Mango

Orange

Peach

Quiz Q2: Heaps

What is the left child of 4 and right child of 6? MaxHeap: Peeking, polling and inserting. We

only have access to a MinHeap. What do we
do?

We have the following heap, representing a Min PQ:
[, 1,4,6,7,10,12,15, 16, 22, 34, 56, 71]
Here, - represents null.

