
CS61BL – Tutoring Section 12

Resources:
- www.cs61bl.org/su20/resources

Sorting
• Review 

• Quiz Review (Optional)
• Worksheet (20 min)
• Questions (5 min)

Friendly reminder: Please participate in order to get marked as ‘present’

Slides by Kevin Miao (kevinmiao@berkeley.edu)

http://www.cs61bl.org/su20/resources
http://www.kevin-miao.com/
http://berkeley.edu


• Idea: Comparing items with each other to determine the 
sorted order.
• Stability: What if two items are equal() to each other?
• Example: [‘ex’, ‘in’]
• Equal() returns whether the strings are equal in length (in this

example only)
• A stable sort will always return [‘ex’, ‘in’]
• Unstable sort could return either [‘ex’, ‘in’] or [‘in’, ‘ex’]

Comparison Based Sorts



• Insertion Sort
• Algorithm: Loop over all items in your list. For each item, insert item in the right position 

in the sorted list
• Runtime: 

• Best Case (Sorted Array): Θ(n)
• Worst Case (Reversely Sorted Array): Θ(n2)

• Stable: Yes
• Possible adjustments:

• Tree Sort
• Use a binary search tree to sort the sorted array 
• Runtime will become O(nlog(n)) (Unbalanced Tree è Θ(n2))

• Selection Sort
• Algorithm: For each position, pick the minimum value on the right side.
• Runtime (Best/Worst):Θ(n2)
• Stable: No

Comparison Based Sorts



• Heap sort
• Algorithm: Basically throw all elements in a heap to be

sorted.
• Runtime (Best/Worst): Θ(nlog(n))
• Stable: No

• Merge Sort
• Algorithm: Divide by half recursively and then build up again

but sorted
• Runtime (Best/Worst): Θ(nlog(n))
• Stable: Yes

• Quick Sort
• Algorithm: Pick a pivot, sort elements smaller to the left and

larger to the right. Recurse down in both halves.
• Runtime

• Best Case (Good pivot): Θ(log(n))
• Worst Case (Bad pivot): Θ(n2)

• Stable: Depends (Three way: stable)

Comparison Based Sorts



• The fastest we can do with Comparisons is O(nLog(n))
• Counting Sort
• Iterate over collection and count occurences
• Then initialize new array with indices based on the counts
• Runtime: O(N+R)

• N = number of items
• R = number of distinct groups

Counting Based Sorting



• Sort based on the most/least significant digit
• LSD Radix

• Sort starting on the last digit to the most significant digit
• Runtime: O(D(N+K))

• D = max number of digits
• N = number of items
• K = number of possible digits

• MSD Radix
• Sort starting on the last digit to the most significant digit
• Runtime Best Case: O(N+K)

• 100, 999, 200, 320 (Radix 100 (3 passes) vs Radix 1000 (1 pass))
• Runtime Worst Case: O(D(N+K))

• O(D(N+K)) ~ O(N) (for some b)
• D = O(b/log(n))
• K = O(N)

Counting Based Sorting



Quiz Q1



Quiz Q2



Worksheet

4. Heapsort Note: if both children are equal, sink to the left.

9 6 8 4A 1 7 2 4B <-- heapified!
8 6 7 4A 1 4B 2 | 9
7 6 4B 4A 1 2 | 8 9
6 4A 4B 2 1 | 7 8 9
4A 2 4B 1 | 6 7 8 9
4B 2 1 | 4A 6 7 8 9
2 1 | 4B 4A 6 7 8 9
1 | 2 4B 4A 6 7 8 9
| 1 2 4B 4A 6 7 8 9

2 Sorting Runtimes
Fill out the best-case and worst-case runtimes for these sorts as well as whether they are stable or not in the
table below.

Best-Case Worst-Case Stability
Selection Sort Q

�
N2� Q

�
N2� No

Insertion Sort Q(N) Q
�
N2� Yes

Heapsort Q(N) Q(NlogN) No

Mergesort Q(NlogN) Q(NlogN) Yes

Quicksort Q(NlogN) Q
�
N2� Depends

Counting Sort Q(N +R) Q(N +R) No

LSD Radix Sort Q(L(N +R)) Q(L(N +R)) Yes

MSD Radix Sort Q(N +R) Q(L(N +R)) Yes

Notes:
- Insertion Sort is good for small and nearly sorted arrays
- Heapsort’s best case is achieved when all the items are duplicates
- Mergesort is good for sorting objects
- In practice, quicksort is the fastest comparison sort.
- In in-place implementations of quicksort, the process of moving items across the pivot doesn’t guarantee
that equivalent items will retain their relative positioning. Non-in-place implementations can be made to be
stable, as we can retain relative orderings when adding items to the ¡, =, and ¿ arrays.

3 You Choose
1. We have a system running insertion sort and we find that it’s completing faster than expected. What

could we conclude about the input to the sorting algorithm?

CS 61B, Summer 2020, Worksheet 12 Solutions 2



Worksheet

4 Name That Sort

Below you will find some intermediate steps in performing various sorting algorithms on the same input

list. The steps do not necessarily represent consecutive steps in the algorithm, but they are in the correct

sequence. Identify the algorithm for each problem:

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1. 1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000
1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392
192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

2. 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392
192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392
129, 192, 594, 1000, 1337, 1429, 3291, 4242, 9001, 4392, 7683

3. 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000
192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000
192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

4. 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192
7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001
129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

5. 12, 32, 14, 11, 17, 38, 23, 34
12, 14, 11, 17, 23, 32, 38, 34

CS 61B, Summer 2020, Worksheet 12 3



Worksheet

2 Sorting Runtimes
Fill out the best-case and worst-case runtimes for these sorts as well as whether they are stable or not in the

table below.

Best-Case Runtime Worst-Case Runtime Stability

Selection Sort

Insertion Sort

Heapsort

Mergesort

Quicksort

Counting Sort

LSD Radix Sort

MSD Radix Sort

3 You Choose

1. We have a system running insertion sort and we find that it’s completing faster than expected. What

could we conclude about the input to the sorting algorithm?

2. Give a 5 element array such that it elicits the worst case runtime for insertion sort.

3. Give some reasons why someone would use merge sort over quicksort.

4. Which sorts never compare the same two elements twice?

5. When might you decide to use radix sort over a comparison sort, and vice versa?

CS 61B, Summer 2020, Worksheet 12 2



Worksheet
CS 61B Small Group Tutoring
Summer 2020 Section 12: Sorting Worksheet 12

1 Step by Step Sorts

Show the steps taken by each sort on the following unordered list of integers (duplicate items are denoted

with letters):

2, 1, 8, 4A, 6, 7, 9, 4B

1. Insertion Sort

2. Selection Sort

3. Merge Sort

4. Heapsort Note: if both children are equal, sink to the left.

CS 61B, Summer 2020, Worksheet 12 1



ALMOST DONE
Thank you.

(If you see me in person, say hi! Let’s not act like 
strangers!)

🎉


