

Discussion 8

Hypothesis Testing and MT Review

Materials: tinyurl.com/d8-disc08 or access through kevin-miao.com under teaching

Today

- Announcements
- (30 min) Worksheet
 - Link: www.tinyurl.com/d8-disc08
- (15 min) Midterm Q&A

Announcements

- Midterm on Friday (3/12) from 7-9PM
 - Create a piazza post if you haven't received an email and ...
 - you are in DSP
 - you signed up to take the alternate exam (only int'l students)
- Assignments
 - Vitamin 7 is due tonight
 - Homework 7 is due Thursday
- No vitamin question today but attendance will be taken
- Regrades are due Friday
 - Gradescope: Submit regrade via button
 - OkPy: Email me

To the worksheet! 🚣

tinyurl.com/d8-disc08

Hypothesis Testing – 7, 5, 6

Question 7. List out the steps used in the process of hypothesis testing.

1	Null and alternative Hypothesis
2	Test Statistic
3	Simulate the data many times
4	colculate observed
5	Caeculate the p-value; conclude test (against p-val cutoff)

Question 5. What is the difference between an AB test and a hypothesis test?

AB testing is a specific trind of hypothesis testing;

we want to see whether two distributions (one from the same under bying distribution.)

Question 6. How do you simulate the null hypothesis for an AB test?

permutation test: Shuffling the labels.

Uses the same without Replacement.

Baby birth Stroken I non stroke rocking wish t 1/10 1/10 3/10 10 10 10 10 a aice Smoto cafa shuffing) Some kind of jest statistic to test categorical distribution agarhst AB Testing != TV a theacticae dis tribution. we see two oustributions distribution

if they are from the same underlying one

Test Statistic

- We design a test statistic based on the context that has been given.
 - Test whether a coin is biased

Test whether a coin is biased towards heads

```
# of heads
```

- Generally, we want to pick a statistic that
 - is small when it is close to the null
 - is large when it is close to the alternative

Designing Statistics – 8

Question 8. For each of the following parts, you will be given a specific scenario, how would you each calculate the test statistic for each of the following. You don't need to write out the full code, just explain which main randomization tools you would need.

a) Drawing 3 marbles from a bag with ½ red marbles, ¼ blue marbles, and ¼ green

b) A table where each row is a Data 8 student with either prior coding experience or no prior coding experience

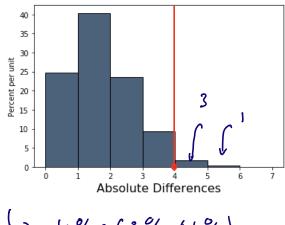
c) The number of times you choose the number 3 in a 7-digit phone number (not including the area code digits)

P-values

P-value

 the probability that under the null hypothesis we see values that are equal to or more in the direction of the alternative than the observed statistic

P-value cutoff


- We can decide which p-value is too extreme and determine whether to reject or support either hypotheses
- Note: we never say a hypothesis is correct or incorrect
- What does that mean if we use a 5% p-value cutoff?
 - o 5% of the times, we support the actionative wransly wiject the nucl

Question 1. On last week's worksheet we proposed two models for how Francie's coin works, the first model was that the coin is fair and the second model was that the coin is not fair. Which model corresponds to the null hypothesis and which model corresponds to the alternative hypothesis? Formally state the hypotheses. As a reminder, Francie flipped a coin 10 times and observed 9 heads. Francie is trying to determine if the coin is fair.

Question 2. We presented the following histogram of simulated values of the test statistic last week. Calculate the empirical p value for the test, and write a line of code to calculate that same value. The simulated test statistics are stored in an array called abs differences.

The heights of the bins are 24, 40, 23, 9 and 3, and 1 percent per unit from left to right.

Observed = |#ofhadu -5 | = 19-51 = 4

Question 3. If we use a p value cutoff of 5% what is the conclusion of our test? What if we use a p value cutoff of 1%?

Question 4. Instead of using absolute difference as the test statistic, the test statistic is now the number of heads flipped in 10 flips. What alternative hypothesis would be associated with each of the p value calculations?

hwr. hads C= 1 - would be better.

Q&A: Midterm

You got this!

End of Section How did I do?

https://tinyurl.com/kevind8feedback