
CS 61B Small Group Tutoring
Summer 2020 Section 7: BSTs and Balanced Trees Worksheet 7

1 Runtime Questions

Provide the best case and worst case runtimes in theta notation in terms of N, and a brief justification for the
following operations on a binary search tree. Assume N to be the number of nodes in the tree. Additionally,
each node correctly maintains the size of the subtree rooted at it. [Taken from Final Summer 2016]

boolean contains(T o); // Returns true if the object is in the tree

Best: Θ( ) Justification:

Worst: Θ( ) Justification:

void insert(T o); // Inserts the given object.

Best: Θ( ) Justification:

Worst: Θ( ) Justification:

T getElement(int i); // Returns the ith smallest object in the tree.

Best: Θ( ) Justification:

Worst: Θ( ) Justification:

2 Is This a BST?

(a) The following code should check if a given binary tree is a BST. However, for some trees, it returns the
wrong answer. Give an example of a binary tree for which brokenIsBST fails.

public static boolean brokenIsBST(TreeNode T) {
if (T == null) {

return true;
} else if (T.left != null && T.left.val > T.val) {

return false;
} else if (T.right != null && T.right.val < T.val) {

return false;
} else {

return brokenIsBST(T.left) && brokenIsBST(T.right);
}

}

(b) Now, write isBST that fixes the error encountered in part (a).
Hint: You will find Integer.MIN_VALUE and Integer.MAX_VALUE helpful.

CS 61B, Summer 2020, Worksheet 7 1



public static boolean isBST(TreeNode T) {
return isBSTHelper( );

}

public static boolean isBSTHelper( ) {

}

3 Pruning Trees

Assume we have some binary search tree, and we want to prune it so that all values in the tree are between
L and R, inclusive. Fill out the method below that takes in a BST, as well as L and R, and returns the pruned
tree. Note that the root of the original tree might not be between L and R, so make sure you return the root
of the new pruned tree.

class BST {
int label;
BST left; // null if no left child
BST right; // null if no right child

}

public BST pruneBST(BST root, int L, int R) {
if (_______________) {

return ________;
} else if (____________________) {

return pruneBST(____________, _____, _____);
} else if (____________________) {

return pruneBST(____________, _____, _____);
}
____________ = pruneBST(____________, _____, _____);
____________ = pruneBST(____________, _____, _____);
return _______;

}

CS 61B, Summer 2020, Worksheet 7 2



4 All about Trees

1. Why does a binary search tree have a worst case runtime of θ(n) for contains?

2. Give a sequence of operations, such that if they were inserted in the order they appear, would result in
a ”poor” binary search tree.

3. Examine this B-tree with order 3. Mark the paths taken when the user calls contains(40).

4. Now call insert(35), and draw the resulting tree.

5. What property of a B-tree rectifies problems of binary search trees, such as the one in 1.1? Why would
you not use a B-tree?

CS 61B, Summer 2020, Worksheet 7 3



5 The Holy LLRB Invariant

RB Tree Invariants: Node labels are in order from left to right. All paths through the tree contain the same
number of black nodes. No red nodes have red parents. As a result, the height of a RB tree with n nodes is
O(logn).

LLRB trees must also maintain the following invariant (in addition to the regular red-black invariant):

1. What are the ”fixups” for the two cases above in order to preserve the LLRB invariant (i.e. what
operations do we perform on each tree to ensure it is a proper LLRB)?

CS 61B, Summer 2020, Worksheet 7 4



Consider the following RB tree:

2. Draw the tree after applying all necessary fixups to make it a proper LLRB tree.

3. Next, insert 10 into the tree, and apply all fixups to preserve the LLRB invariant.

CS 61B, Summer 2020, Worksheet 7 5



4. Finally, draw the corresponding 2-3 tree.

CS 61B, Summer 2020, Worksheet 7 6


	Runtime Questions
	Is This a BST?
	Pruning Trees
	All about Trees
	The Holy LLRB Invariant

