
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iterators and Exceptions

Resources available

Kevin Miao com

Today
Mini Review
Quiz Review

what does Java print
Iterators

Worksheet

Exceptions and ERROR Handling
Try Catch blocks



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Throwing Exceptions

Iterators
Analogous to comparators and Coneparables

Tterables Objects that can be iterated over

Java collections Sets
t t l

7Lashmaps Lists Arrays

ITterablect L
Iterator CT iterator c j

Tpublic Interface Tterata CT

boolean hasNextc j
T hextc
removecs

Ineachremaining z
j



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Quit Review

Java Visualizer



CS 61B Small Group Tutoring
Summer 2020 Section 5 Exceptions, Iterators, and Iterables Worksheet 5

1 Pusheen Exceptions
Below is a class that represents a Pusheen. Pusheen cares about two things: happiness and food. Her
happiness is directly proportional to how much she is fed.

public class Pusheen {
public int happiness;

public Pusheen() {
happiness = 0;

}

public void feed(int amount) {
happiness = 14 * amount;

}
}

Unfortunately, some Pusheen haters have decided to try and feed Pusheen a negative amount! Obviously,
we must prevent this from happening.

Modify the feed method to throw an InvalidPusheenException if Pusheen is fed with a negative
amount. Being fed a negative amount should NOT change Pusheen’s happiness.

public void feed(int amount) throws InvalidPusheenException {

}

CS 61B, Summer 2020, Worksheet 5 1



2 Exceptions
What does Java display when the main method of Test is run?

class Test
{

String str = "a";

public void A()
{

try
{

str +="b";
B();

}
catch (Exception e)
{

str += "c";
}

}
public void B() throws Exception
{

try
{

str += "d";
C();

}
catch(Exception e)
{

throw new Exception();
}
finally
{

str += "e";
}

str += "f";

}
public void C() throws Exception
{

throw new Exception();
}
public void display()
{

System.out.println(str);
}
public static void main(String[] args)
{

Test object = new Test();
object.A();
object.display();

}
}

CS 61B, Summer 2020, Worksheet 5 2



3 Pizza Iterator
Artichoke’s is overwhelmed by the number of hungry students in line at 12 AM. To make things more
efficient, the owner has asked you to build a custom iterator that will aggregate all orders and print out the
number of slices that should made for each kind of pizza.

The static menu array declared inside PizzaIterator contains the three types of pizza offered that night.

static String[] menu = {"Artichoke", "Margherita", "Meatball"};

The input array passed into the constructor contains the list of orders.

int [] orders = { 0 , 2 , 1 , 0 , 1 , 0 };

Each order is represented by an integer that corresponds to the pizza’s index in the menu array. For example,
0 represents an order of Artichoke pizza.

Fill in the code for MenuIterator, an iterator that takes in an int[] array representing orders at the
restaurant and iterates over the aggregated results.

Given the input above, calls to next() would eventually return ”Artichoke 3”,”Margherita 2”, ”Meatball
1”. Make sure your iterator adheres to standard iterator rules.

public class MenuIterator implements Iterator {
private static String[] menu = {"Artichoke", "Margherita", "Meatball"};
private int[] order_counts = new int[3];
private int index;

public MenuIterator(Integer[] orders){

}

public boolean hasNext() {

}

public String next() {
//Should return a string in the format "Artichoke 3".

}
}

CS 61B, Summer 2020, Worksheet 5 3


